Analysis of the Borrelia burgdorferi cyclic-di-GMP-binding protein PlzA reveals a role in motility and virulence.
نویسندگان
چکیده
The cyclic-dimeric-GMP (c-di-GMP)-binding protein PilZ has been implicated in bacterial motility and pathogenesis. Although BB0733 (PlzA), the only PilZ domain-containing protein in Borrelia burgdorferi, was reported to bind c-di-GMP, neither its role in motility or virulence nor it's affinity for c-di-GMP has been reported. We determined that PlzA specifically binds c-di-GMP with high affinity (dissociation constant [K(d)], 1.25 μM), consistent with K(d) values reported for c-di-GMP-binding proteins from other bacteria. Inactivation of the monocistronically transcribed plzA resulted in an opaque/solid colony morphology, whereas the wild-type colonies were translucent. While the swimming pattern of mutant cells appeared normal, on swarm plates, mutant cells exhibited a significantly reduced swarm diameter, demonstrating a role of plzA in motility. Furthermore, the plzA mutant cells were significantly less infectious in experimental mice (as determined by 50% infectious dose [ID(50)]) relative to wild-type spirochetes. The mutant also had survival rates in fed ticks lower than those of the wild type. Consequently, plzA mutant cells failed to complete the mouse-tick-mouse infection cycle, indicating plzA is essential for the enzootic life cycle of B. burgdorferi. All of these defects were corrected when the mutant was complemented in cis. We propose that failure of plzA mutant cells to infect mice was due to altered motility; however, the possibility that an unidentified factor(s) contributed to interruption of the B. burgdorferi enzootic life cycle cannot yet be excluded.
منابع مشابه
Cyclic Di-GMP receptor PlzA controls virulence gene expression through RpoS in Borrelia burgdorferi.
As an obligate pathogen, the Lyme disease spirochete Borrelia burgdorferi has a streamlined genome that encodes only two two-component signal transduction systems, Hk1-Rrp1 and Hk2-Rrp2 (in addition to CheA-CheY systems). The output of Hk1-Rrp1 is the production of the second messenger cyclic di-GMP (c-di-GMP), which is indispensable for B. burgdorferi to survive in the tick vector. The output ...
متن کاملThe cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi
In nature, the Lyme disease spirochete Borrelia burgdorferi cycles between the unrelated environments of the Ixodes tick vector and mammalian host. In order to survive transmission between hosts, B. burgdorferi must be able to not only detect changes in its environment, but also rapidly and appropriately respond to these changes. One manner in which this obligate parasite regulates and adapts t...
متن کاملNovel Cyclic di-GMP Effectors of the YajQ Protein Family Control Bacterial Virulence
Bis-(3',5') cyclic di-guanylate (cyclic di-GMP) is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. ...
متن کاملIdentification of Two Epitopes on the Outer Surface Protein A of the Lyme Disease Spirochete Borrelia burgdorferi
A murine IgM monoclonal antibody (MA-2C6) with κ-light chains directed against an antigenic determinant of outer surface protein A (OspA) of the Lyme disease spirochete, Borreliaburgdorferi, is produced. This antibody could bind specifically to OspA antigen of several isolates of B. burgdorferi, but not to the non-Lyme disease bacteria such as T. pallidum and B. hermsii. Antibody MA-2C6 was pur...
متن کاملCrystal structure of an HD‐GYP domain cyclic‐di‐GMP phosphodiesterase reveals an enzyme with a novel trinuclear catalytic iron centre
Bis-(3',5') cyclic di-guanylate (c-di-GMP) is a key bacterial second messenger that is implicated in the regulation of many crucial processes that include biofilm formation, motility and virulence. Cellular levels of c-di-GMP are controlled through synthesis by GGDEF domain diguanylate cyclases and degradation by two classes of phosphodiesterase with EAL or HD-GYP domains. Here, we have determi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 79 5 شماره
صفحات -
تاریخ انتشار 2011